您当前的位置:首页 > 养生常识

数据挖掘决策树算法(数据挖掘决策树算法应用)

时间:2024-10-29 09:55:20

本篇目录:

1、数据挖掘十大算法-2、机器学习中常用的算法有哪些3、决策树分类算法有哪些

数据挖掘十大算法-

CART算法(Classification And Regression Tree)[4]是一种二分递归的决策树,把当前样本划分为两个子样本,使得生成的每个非叶子结点都有两个分支,因此CART算法生成的决策树是结构简洁的二叉树。

以下主要是常见的10种数据挖掘的算法,数据挖掘分为:分类(Logistic回归模型、神经网络、支持向量机等)、关联分析、聚类分析、孤立点分析。

数据挖掘决策树算法(数据挖掘决策树算法应用)-图1

K近邻算法(K-Nearest Neighbor,KNN):是一种基于相似度的分类算法,常用于图像识别、推荐系统等领域。决策树算法(Decision Tree):是一种基于树形结构的分类算法,常用于数据挖掘、金融风控等领域。

EM算法推导过程 补充知识:Jensen不等式:如果f是凸函数,函数的期望 大于等于 期望的函数。当且仅当下式中X是常量时,该式取等号。

最基本的方法是计算各种统计变量(平均值、方差等)和察看数据的分布情况。你也可以用数据透视表察看多维数据。数据的种类可分为连续的,有一个用数字表示的值(比如销售量)或离散的,分成一个个的类别(如红、绿、蓝)。

常用的数据挖掘算法分为以下几类:神经网络,遗传算法,回归算法,聚类分析算法,贝耶斯算法。

数据挖掘决策树算法(数据挖掘决策树算法应用)-图2

机器学习中常用的算法有哪些

机器学习中常用的方法有:(1) 归纳学习 符号归纳学习:典型的符号归纳学习有示例学习、决策树学习。函数归纳学习(发现学习):典型的函数归纳学习有神经网络学习、示例学习、发现学习、统计学习。

机器学习的相关算法包括:监督学习、非监督学习和强化学习。监督学习 支持向量机:是一类按监督学习方式对数据进行二元分类的广义线性分类器,其决策边界是对学习样本求解的最大边距超平面。

学习向量量化算法(简称 LVQ)学习向量量化也是机器学习其中的一个算法。可能大家不知道的是,K近邻算法的一个缺点是我们需要遍历整个训练数据集。

常见的机器学习算法包含线性回归、Logistic回归、线性判别分析。在统计学和机器学习领域,线性回归可能是最广为人知也最易理解的算法之一。Logistic回归是机器学习从统计学领域借鉴过来的另一种技术。它是二分类问题的首选方法。

数据挖掘决策树算法(数据挖掘决策树算法应用)-图3

神经网络神经网络是由多个节点组成的模型,模拟人脑的处理方式。该模型使用多个输入值来计算输出值,中间可能包含多层节点。神经网络是解决多种问题的强大算法。

决策树分类算法有哪些

1、决策树求解算法有:ID3,C5,CART等。决策树算法是一种逼近离散函数值的方法。它是一种典型的分类方法,首先对数据进行处理,利用归纳算法生成可读的规则和决策树,然后使用决策对新数据进行分析。

2、CLS算法就是最原始的决策树分类算法,基本流程是,从一棵空数出发,不断的从决策表选取属性加入数的生长过程中,直到决策树可以满足分类要求为止。CLS算法存在的主要问题是在新增属性选取时有很大的随机性。

3、用决策树进行分类的方法为:收集数据、准备数据、构建决策树、评估决策树、应用决策树、维护和更新决策树等。收集数据 确定要解决的问题,并收集相关的数据。这可能包括从数据库、调查、传感器或其他来源获取的数据。

4、算法理论:我了解的决策树算法,主要有三种,最早期的ID3,再到后来的C5和CART这三种算法。这三种算法的大致框架近似。决策树的学习过程 特征选择 在训练数据中 众多X中选择一个特征作为当前节点分裂的标准。

到此,以上就是小编对于数据挖掘决策树算法应用的问题就介绍到这了,希望介绍的几点解答对大家有用,有任何问题和不懂的,欢迎各位老师在评论区讨论,给我留言。

算法

最新文章